

DATE: February 4th, 2020

TO: UCM Medical Staff, Housestaff, Nursing Staff, and Patient Care Centers

FROM:

Xander van Wijk, PhD, DABCC

Assistant Professor, Pathology Director, Rapid Response Laboratory Assistant Director, Clinical Chemistry Laboratories

KT Jerry Yeo, PhD, DABCC, FAACC

Professor, Pathology Director, Clinical Chemistry Laboratories

Edward Naureckas, MD

Professor of Medicine Director, Pulmonary Function Laboratory Director, Adult Cystic Fibrosis Program

Michael O'Connor, MD

Professor of Anesthesia and Critical Care Professor of Medicine

RE: Updated Blood Gas Reference Ranges and Co-Oximetry Reporting

Starting February 5th, 2020, the Rapid Response Laboratory (Central Clinical Laboratories) and the Respiratory Care Laboratory in Comer (NICU Lab K239) will report the complete co-oximetry panel with every blood gas order. Additionally, reference ranges for mixed venous¹, cord^{1,2}, and capillary³ blood gas tests will be updated. These updates are expected to be phased in over a period of two weeks.

This co-oximetry panel consist of:

- SO₂ (%): measured oxygen saturation of <u>functional</u> hemoglobin (i.e. O₂Hb and HHb)
- Total Hemoglobin (tHb, g/dL)
- % Oxyhemoglobin (O₂Hb): measured oxygen saturation of *total* hemoglobin
- % Deoxyhemoglobin (HHb): deoxygenated hemoglobin
- % Carboxyhemoglobin (COHb): a stable complex of carbon monoxide and hemoglobin
- % Methemoglobin (MetHb): hemoglobin with iron in the Fe³⁺ state not able to bind oxygen

O₂Hb, HHb, COHb, MetHb are reported as % of total hemoglobin and add up to 100%.

Definitions⁴:

• % Oxyhemoglobin =
$$\frac{cO_2Hb}{[cO_2Hb + cHHb + cCOHb + cMetHb]}$$
 x 100

Please note that:

- 1) SO₂ is the measured oxygen saturation of *functional* hemoglobin (O₂Hb and HHb) and it does *not* account for the presence of dyshemoglobins like COHb and MetHb.
- 2) In the absence of dyshemoglobins, SO₂ (as determined by pulse oximetry or co-oximetry) should be equal to % oxyhemoglobin. In the presence of elevated COHb or MetHb, the % oxyhemoglobin will be significantly decreased in comparison to SO₂. In such a situation (*e.g.* severe CO poisoning), the SO₂ typically will be within normal limits while the O₂ content may be severely decreased leading to potentially fatal outcomes if not recognized.
- 3) Thus, it is important to review the complete co-oximetry panel and not just the SO₂ result.

If you have any questions, please contact Dr. van Wijk by email at xvanwijk@bsd.uchicago.edu or by phone at 773-702-2806.

References

- 1) Contemporary Practice in Clinical Chemistry, 3rd Ed. ISBN 9781594251894. Pg 450-463.
- 2) B. Fouse: Reference range evaluation for cord blood gas parameters. Available at https://acutecaretesting.org/en/articles/reference-range-evaluation-for-cord-blood-gas-parameters
- 3) Cousineau J et al. Clinical Biochemistry 2005;38:905-907
- 4) Haymond S et al. Clin Chem 2005;51:434-444