DATE: February 4th, 2020

TO: UCM Medical Staff, Housestaff, Nursing Staff, and Patient Care Centers

FROM:

Xander van Wijk, PhD, DABCC
Assistant Professor, Pathology
Director, Rapid Response Laboratory
Assistant Director, Clinical Chemistry Laboratories

Edward Naureckas, MD
Professor of Medicine
Director, Pulmonary Function Laboratory
Director, Adult Cystic Fibrosis Program

KT Jerry Yeo, PhD, DABCC, FAACC
Professor, Pathology
Director, Clinical Chemistry Laboratories

Michael O’Connor, MD
Professor of Anesthesia and Critical Care
Professor of Medicine

RE: Updated Blood Gas Reference Ranges and Co-Oximetry Reporting

Starting February 5th, 2020, the Rapid Response Laboratory (Central Clinical Laboratories) and the Respiratory Care Laboratory in Comer (NICU Lab K239) will report the complete co-oximetry panel with every blood gas order. Additionally, reference ranges for mixed venous1, cord1,2, and capillary3 blood gas tests will be updated. These updates are expected to be phased in over a period of two weeks.

This co-oximetry panel consist of:
- \(SO_2\) (%): measured oxygen saturation of functional hemoglobin (\textit{i.e.} \(O_2Hb\) and \(HHb\))
- Total Hemoglobin (\(tHb, g/dL\))
- \% Oxyhemoglobin (\(O_2Hb\)): measured oxygen saturation of total hemoglobin
- \% Deoxyhemoglobin (\(HHb\)): deoxygenated hemoglobin
- \% Carboxyhemoglobin (\(COHb\)): a stable complex of carbon monoxide and hemoglobin
- \% Methemoglobin (\(MetHb\)): hemoglobin with iron in the \(Fe^{3+}\) state not able to bind oxygen

\(O_2Hb\), \(HHb\), \(COHb\), \(MetHb\) are reported as \% of total hemoglobin and add up to 100%.

Definitions4:
- \(SO_2\) (%) = \(\frac{cO_2Hb}{[cO_2Hb + cHHb]}\) x 100
- \% Oxyhemoglobin = \(\frac{cO_2Hb}{[cO_2Hb + cHHb + cCOHb + cMetHb]}\) x 100
Please note that:
1) SO₂ is the measured oxygen saturation of functional hemoglobin (O₂Hb and HHb) and it does not account for the presence of dyshemoglobins like COHb and MetHb.
2) In the absence of dyshemoglobins, SO₂ (as determined by pulse oximetry or co-oximetry) should be equal to % oxyhemoglobin. In the presence of elevated COHb or MetHb, the % oxyhemoglobin will be significantly decreased in comparison to SO₂. In such a situation (e.g. severe CO poisoning), the SO₂ typically will be within normal limits while the O₂ content may be severely decreased leading to potentially fatal outcomes if not recognized.
3) Thus, it is important to review the complete co-oximetry panel and not just the SO₂ result.

If you have any questions, please contact Dr. van Wijk by email at xvanwijk@bsd.uchicago.edu or by phone at 773-702-2806.

References